首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12216篇
  免费   2656篇
  国内免费   1279篇
化学   2813篇
晶体学   172篇
力学   1303篇
综合类   152篇
数学   2114篇
物理学   9597篇
  2024年   13篇
  2023年   151篇
  2022年   240篇
  2021年   307篇
  2020年   387篇
  2019年   307篇
  2018年   304篇
  2017年   419篇
  2016年   486篇
  2015年   460篇
  2014年   698篇
  2013年   917篇
  2012年   786篇
  2011年   871篇
  2010年   806篇
  2009年   833篇
  2008年   857篇
  2007年   787篇
  2006年   793篇
  2005年   701篇
  2004年   728篇
  2003年   600篇
  2002年   547篇
  2001年   449篇
  2000年   416篇
  1999年   350篇
  1998年   324篇
  1997年   243篇
  1996年   222篇
  1995年   160篇
  1994年   144篇
  1993年   113篇
  1992年   97篇
  1991年   84篇
  1990年   81篇
  1989年   86篇
  1988年   61篇
  1987年   47篇
  1986年   57篇
  1985年   42篇
  1984年   29篇
  1983年   14篇
  1982年   25篇
  1981年   20篇
  1980年   17篇
  1979年   13篇
  1978年   13篇
  1977年   11篇
  1976年   7篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
High-efficiency photocatalysts based on metal-organic frameworks (MOFs) are often limited by poor charge separation and slow charge-transfer kinetics. Herein, a novel MOF photocatalyst is successfully constructed by encapsulating C60 into a nano-sized zirconium-based MOF, NU-901. By virtue of host-guest interactions and uneven charge distribution, a substantial electrostatic potential difference is set-up in C60@NU-901. The direct consequence is a robust built-in electric field, which tends to be 10.7 times higher in C60@NU-901 than that found in NU-901. In the catalyst, photogenerated charge carriers are efficiently separated and transported to the surface. For example, photocatalytic hydrogen evolution reaches 22.3 mmol g−1 h−1 for C60@NU-901, which is among the highest values for MOFs. Our concept of enhancing charge separation by harnessing host-guest interactions constitutes a promising strategy to design photocatalysts for efficient solar-to-chemical energy conversion.  相似文献   
85.
Constructing a reliable solid-electrolyte interphase (SEI) is imperative for enabling highly reversible zinc metal (Zn0) electrodes. Contrary to conventional “bulk solvation” mechanism, we found the SEI structure is dominated by electric double layer (EDL) adsorption. We manipulate the EDL adsorption and Zn2+ solvation with ether additives (i.e. 15-crown-5, 12-crown-4, and triglyme). The 12-crown-4 with medium adsorption on EDL leads to a layer-structured SEI with inner inorganic ZnFx/ZnSx and outer organic C−O−C components. This structure endows SEI with high rigidness and strong toughness enabling the 100 cm2 Zn||Zn pouch cell to exhibit a cumulative capacity of 4250 mAh cm−2 at areal-capacity of 10 mAh cm−2. More importantly, a 2.3 Ah Zn||Zn0.25V2O5n H2O pouch cell delivers a recorded energy density of 104 Wh Lcell−1 and runs for >70 days under the harsh conditions of low negative/positive electrode ratio (2.2 : 1), lean electrolyte (8 g Ah−1), and high-areal-capacity (≈13 mAh cm−2).  相似文献   
86.
Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+) mechanism, and the intercalated TMS works as a “pillar” that provides more zincophilic sites and stabilizes the structure of cathode (NH4V4O10, (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6 mAh g−1 at a low current density of 0.2 A g−1 for over 40 days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.  相似文献   
87.
Solar-driven CO2 reduction reaction (CO2RR) is largely constrained by the sluggish mass transfer and fast combination of photogenerated charge carriers. Herein, we find that the photocatalytic CO2RR efficiency at the abundant gas-liquid interface provided by microdroplets is two orders of magnitude higher than that of the corresponding bulk phase reaction. Even in the absence of sacrificial agents, the production rates of HCOOH over WO3 ⋅ 0.33H2O mediated by microdroplets reaches 2536 μmol h−1 g−1 (vs. 13 μmol h−1 g−1 in bulk phase), which is significantly superior to the previously reported photocatalytic CO2RR in bulk phase reaction condition. Beyond the efficient delivery of CO2 to photocatalyst surfaces within microdroplets, we reveal that the strong electric field at the gas-liquid interface of microdroplets essentially promotes the separation of photogenerated electron-hole pairs. This study provides a deep understanding of ultrafast reaction kinetics promoted by the gas-liquid interface of microdroplets and a novel way of addressing the low efficiency of photocatalytic CO2 reduction to fuel.  相似文献   
88.
Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg−1] versus DLNs-based chemotherapy [0.75 mg kg−1]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects.  相似文献   
89.
The present paper reports the investigation of surface morphology, elemental composition, phase changes and field emission properties of Si ion irradiated nickel (Ni) and titanium (Ti). The Ni and Ti targets have been irradiated with 500 keV Si ions generated by Pelletron accelerator at various fluences ranging from 6.9 × 1013 to 77.1 × 1013 ions/cm2. Stopping range of ions in matter analysis revealed higher values of electronic stopping and sputtering yield for Ni as compared with Ti. For both irradiated metals, electronic energy loss dominant over the nuclear stopping. The growth of induced surface structures have been analysed by using field emission scanning electron microscopy (FESEM) analysis. In case of Ni, as the ion fluence increases from 6.9 × 1013 to 65.8 × 1013 ions/cm2, the formation of spherical particulates, agglomers and sputtering is observed. Although in the case of Ti, with the increase of Si ion fluence from 11.6 × 1013 to 77.1 × 1013 ions/cm2, the formation of irregular-shaped particulates along with crater and sputtered channels is observed. X-ray diffraction (XRD) analysis shows that no new phase is identified. However, a significant increase in peak intensity is observed with increasing ion fluence. The variation in crystallite size and dislocation line density is also observed as a function of Si ion fluence. Fourier transform infrared spectroscopy analysis shows that no bands are formed after the Si ion irradiation. Field emission properties of ion-structured Ni and Ti are well correlated with the growth of surface structures observed by SEM and dislocation line density evaluated by XRD analysis.  相似文献   
90.
Dielectrophoresis (DEP) is a successful method to recover nanoparticles from different types of fluid. The DEP force acting on these particles is created by an electrode microarray that produces a nonuniform electric field. To apply DEP to a highly conducting biological fluid, a protective hydrogel coating over the metal electrodes is required to create a barrier between the electrode and the fluid. This protects the electrodes, reduces the electrolysis of water, and allows the electric field to penetrate into the fluid sample. We observed that the protective hydrogel layer can separate from the electrode and form a closed domed structure and that collection of 100 nm polystyrene beads increased when this occurred. To better understand this collection increase, we used COMSOL Multiphysics software to model the electric field in the presence of the dome filled with different materials ranging from low-conducting gas to high conducting phosphate-buffered saline fluids. The results suggest that as the electrical conductivity of the material inside the dome is reduced, the whole dome acts as an insulator which increases electric field intensity at the electrode edge. This increased intensity widens the high-intensity electric field factor zone resulting in increased collection. This informs how dome formation results in increased particle collection and provides insight into how the electric field can be intensified to the increase collection of particles. These results have important applications for increasing the recovery of biologically-derived nanoparticles from undiluted physiological fluids that have high conductance, including the collection of cancer-derived extracellular vesicles from plasma for liquid biopsy applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号